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QUASI-SASAKIAN STRUCTURES OF RANK 2p -1

SHOKICHI TANNO

Introduction

Quasi-Sasakian structures were defined and studied by D. E. Blair [1]. How-
ever, there are some gaps in arguments in § 3 — § 5 of [1]. The first is found
in the middle of page 337, namely, for a quasi-Sasakian structure (g, £, 7, g"),
the new (¢, &, 7, & is not quasi-Sasakian, in general. Moreover, &%, ¢, 6 are
not uniquely determined.

In this note we give complete statements on quasi-Sasakian structures of rank
2p + 1.

1. Quasi-Sasakian structures

Let ¢ be a (1, 1)-tensor, & a vector field, and 7 a 1-form on a differentiable
manifold M of dimension 2n + 1. Then (¢, £, ) is an almost contact structure if

(1.1) 7)=1, ¢ =0, 79=0,
(1.2) F=—1+&:Ry.

For a (positive definite) Riemannian metric g, (¢, £, 7, g) is an almost contact
metric structure if

(1.3) nX) = g, X) ,
1.4 8($X,¢Y) = g(X,Y) — p(X)n(Y)

for X,Y e &', where £***! denotes the module of vector fields on M. An
almost contact metric structure (¢, &, 7, g) is a contact metric structure if

DX, Y) = 28(X,4Y)  for X,Ye&mn+ |
(¢, &, ) is said to be normal if

([¢, I(X, Y) = FIX, Y] + [¢X, Y] — 4LX, ¢Y] — 4l$X, Y] .)

N' = 0 implies the followings (cf. [4]):

(1.5)
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(1.6) N(X,Y) = (Lyxp(Y) — (Lyr)X) =0,
1.7 N(X) = LHX =0,
(1.8) NX) = —(LpX =0,

where Ly denotes the Lie derivation with respect to X. Define a 2-form ¢ by
O(X,Y) = g(X,¢Y). Then a normal almost contact Riemannian structure
(¢, &, 7, @ is said to be quasi-Sasakian, if @ is closed.

Proposition 1.1. Let M(¢, &, 7, 8) be a quasi-Sasakian manifold. Then we

have

1.9 dn(¢,X) =0, Xe &7t
(1.10) dy(¢pX,¢Y) = dy(X,Y) , X,Y e &®,
(1.1D) L¢=0,

(1.12) Lg=0.

Proof. (1.9) and (1.11) are the same as (1.8) and (1.7). Since L,yn =
di(¢X)n + i(¢X)dy, by (1.1) and (1.6) we obtain

(1.13) dy($X,Y) — dp(gY,X) = 0.

Then replacing Y by ¢Y and using (1.9) we have (1.10). (1.12) can be pfoved
by means of d® = 0, (1.8) and (1.11) (cf. [1, Lemma 4.1]).
Remark. The condition d@ = 0 is used only for (1.12).

2. Quasi-Sasakian manifolds of rank 2p 4 1

Let M(¢, &, 7, 8 be a quasi-Sasakian manifold. If dy = 0 on M, then M is
called a cosymplectic manifold (cf. [2]). If 2@ = d, then M is called a Sasakian
manifold or a manifold with normal contact metric structure (cf. [4]). In this
case, » A\ (dp)™ # 0 holds on M.

A quasi-Sasakian manifold M (or more generally, an almost contact mani-
fold M) is said to be of rank 2p if (dp)? % 0 and » A (dp)? = 0 on M, and to
be of rank 2p + 1 if 5 A (dp)? # 0 and (dp)?** = 0 on M. It is known that there
are no quasi-Sasakian structures of even rank (cf. [1]).

Let M be a quasi-Sasakian manifold of rank 2p + 1, and define a submodule
&% of &2+ (2q = 2n — 2p) by

&% = {X e £; iX)dy = 0 and 7(X) = 0} .

&% is well defined and &% is of dimension 2¢ at each point x of M. We denote
by &* a submodule of £%**! composed of {f¢} for C-functions f on M, and by
& the orthogonal complement of &' @ &£ in £+, Put %! = §7 @ &,
and let X ¢ £*. Then by p(¢X) = 0 and (1.13) or (1.10) we have ¢X e £%.
Since X = ¢(—¢X) for X e £%2, we get
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2.1) ¢ = &4, P& = &P .
Define (1,1)-tensors ¢ and 4 by

WX)=¢X ifXeer,
=0 if Xes4@ &,
oX) = X  ifXeém,
=0 if X ¢ g0,

Then —¢*, —¢* + &€ ® » and — ¢ are projection tensors to &°7, £°2*! and £
respectively, and we have ¢ = ¢ + 6 and

2.2) $p=¢p=¢, $I=08=¢

by the definitions of ¢ and 4 and by (2.1) respectively. We define a (0,2)-
tensor gt by

(2.3) 28X, Y) = —dy(X,¢Y), X, Ye&mt,

By (1.13), gt is symmetric. Assume that g* is positive definite on £?#, and define
a new metric g by

(2.4) gX,Y) = g(X)m(Y) + gy'X,y'Y) + g0°X,6°Y) .

Then we have

g¢, X) = 9(X), g(¢X,¢Y) = g(X,Y) — p(X)n(Y)

by (1.10) and (2.2), etc. (¢, &, 3, &) is a normal almost contact metric structure.

Proposition 2.1. Let M(¢,&,7,8 be a quasi-Sasakian manifold of rank
2p + 1, and assume that

(ii) g* defined by (2.3) is positive definite on &**. Then M has a normal
almost contact metric structure (¢, &, 7, g) such that for each point x of M we
have two submanifolds U***' and V*¢ of M containing x, where U™**! is a
Sasakian manifold and V*¢ is a Kédhlerian manifold.

Proof. An almost product structure (defined by —* and —¢* + £ ® y) is
integrable (see [5, p. 240]), since [4, 4] = 0 implies [#*, §*] = 0. For a point x
of M, let V¢ and U***! be integral submanifolds of —#* and —¢* + & & 5 pass-
ing through x. Consider the imbeddings r: V*¢ — M and s: U***' - M, and
let u, v be vector fields on U****. Define ¢, &, 7, o bY

Gt = 57'psu = s '¢su , §=1s7¢,

) = pisw) , 70 = 5%y, &, v) = g(su,sv) ,



320 SHOKICHI TANNO

where by s we also mean the differential of s; these are well defined. (g, &,
70> &) is an almost contact metric structure, and is normal since

s{lgo> @, v) + (dno)(, v)&} = [, $l(su, sv) + (dp)(su, sv)§ = 0.

Further, we have

28(u, ¢v) = 28(su, gsv) = 2g%(su, psv) = — (dp)(su, sv)
=(dp(su, sv) = (s*dp(u,v) = (dp)(u,v) .

Hence U??+! is a Sasakian manifold.
Let w, z be vector fields on V??, and define J, and G, by

Jow = r l9rw = rii¢rw G(w,2) = glrw, r2) .

Then J, and G, are well defined and define an almost Hermitian structure.
Moreover, J, is integrable since

[y T, 20} = [6, 610w, r2) = O .
Define Q,(w,2) = Gy(w, J,z). Then

Qiw,z) = glrw, rl2) = girw, ¢rz)
= g(Grw, G%¢rz) by (2.4)
= O(w,rz) = (r*®)(w, 2) ,
and therefore dQ, = dr*Q = r*d® = 0. Hence V*¢ is Kéhlerian.
Remark. d® = O is used only for d2, = 0. Thus, if d6 = 0, then ag =0
is unnecessary, where © is deﬁlled below.
We define 2-forms ¥,¥, 0,6 by
0X.,Y) = gX,0Y), 0(X,Y) = g(X,6Y) .

- Lemma 2.2. &°7 and &% are invariant under exp t&, and we have

(2.5) Lp=0, L¥=LT=0,
(2.6) L#=0, LO=LO=0,
Q2.7 Lg=0, Lg=0.

Proof. Let X ¢ 6% and put « = exp #£, ¢ being a real number (sufficiently
small, if necessary). If & is complete, « is a diffeomorphism of M. If £ is
not complete, we understand that « is a map: W — «W for some open set W,
and also that X ¢ &7 implies X | W ¢ £2¢| W. Since « leaves 7 invariant, we have
p(@X) = 0. For Z ¢ §**,
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dp(aX, Z) = (dp)aX,ala™'Z)) = a*(d)PX,a'Z) = dy(X,a'Z) =0,

which implies i(eX)dp = 0. Therefore £*? and also &7 are invariant under «.
Next, we show (2.5). Let X e 2. Then we get

(2.8) (L)X = L($pX) — $LX .

By the definition of ¢ we have ¢X = ¢X. Since &*? is invariant under exp #£,
L X e &7 and therefore ¢L X = ¢L.X. Thus

(Le¢)X = Le(¢X) - ¢L5X = (Le¢)X P

and (L)X = 0 by (1.11). If Xe 62 &', then (L)X = O follows from
(2.8). Hence we have L.¢ = 0. Further, L. = 0 follows from ¥'(X,Y) =
8(X,¢Y) and (1.12),L,6 =0 from L.¢ = 0,L.¢) =0 and ¢ = ¢ + 6, and
L.g*=0 from (2.3) and L.dy=dL.=0. Finally, by (2.4) we have L.g = 0.
Remark. d® = 0 is used only for L.g = 0.
Lemma 2.3. For X ¢ §*', we have

(2.9 Ve = —¢X .

Proof. Since L.g = 0 by Lemma 2.2, we have (Fy7)Y + (FypX = 0,
which implies

(.10 @X,Y) = Tx)Y — FyX = —2(FypX= ~28(y§, X) .

Next, we show that
@.11) dy(X,Y) = 28(X, $Y)

for X,Ye&™* If X, Yed&?, then (2.11) is (2.3). If Xe&* 7@ & or
Y e £2 @ &, then both sides of (2.11) vanish. Thus we have (2.11), and finally
(2.10) and (2.11) give (2.9).

Remark. d® =0 is used to apply L,g = 0. Thus, if L,g = O, then Lemma
2.3 holds for a normal almost contact Riemannian manifold of rank 2p 4+ 1.

By K(X,.,Y,) we denote the sectional curvature with respect to g for a 2-
plane determined by X, and Y, at x of M.

Theorem 2.4. Let M($,&,7,8 be a quasi-Sasakian manifold of rank
2p + 1, and assume that g* defined by (2.3) is positive definite on &**. Then,
with respect to g, we have

RE,X) =1 ifX,eé? -0
=0 ifX,ef®—0.

Proof. Let X ¢ £*2 @ &% and assume that X is a unit vector field (locally).
Then, by (2.5) and (2.9),
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E(R(‘E’ X)‘E’X) = g((ﬁ[e,X] + 73'75 - 7572')‘5’ X) = —g(¢2X, X) .

Thus, if X, e £%?, then K(§,, X,) = 1; if X, ¢ &%, then K(§,,X,) = 0.
Proposition 2.5. In a quasi-Sasakian manifold, we have

Vx0)Y, Z) = (D)W xn)(Y) — p(V)W x)($2)
(= (D)W &, ¢Y) — (Y)W 4§, $2)) .

If Misof rank 2p + 1 and V 3§ = —¢X, then

(2.12)

FxPNY,Z) = y(Y)g(X, Z) — 7(Z2)8(X, Y)

(2.13) :
+ 9(Y)gl°X, Z) — n(2)8(¢°X, Y) .

If M is of rank 2p + 1 and @ is also closed for the metric g defined by (2.4),
then (2.13) holds for 7, ®, g. ‘ _

Proof. In [4] under the assumptions N' = 0,d® = 0 and L.g = 0, it was
proved that '

Vi@u = —n iy — 7V el

which is nothing but (2.12) since V,5; = —V;5;. If M is of rank 2p + 1 and
V& = —¢X, then we obtain (2.13) from(2:12) on account of (1.4), ¢¢ = ¢*,
and ¢ = —1 + @y — . If @ is closed, we have (2.12) for 7,®, g, and
hence the last statement of Proposition 2.5 follows from (2.9).

Next we have (cf. [1, Theorem 5.2])

Corollary 2.6. A quasi-Sasakian manifold is cosymplectic if and only if
V@ = 0 (or equivalently V¢ = 0).

In fact, if a quasi-Sasakian manifold is cosymplectic, then dyp = 0 and L.g
= 0, which imply /'y = 0. Thus by (2.12) we have F® = 0. The converse fol-
lows from [¢, §] = O and (1.5).

3. Locally product quasi-Sasakian manifolds

Let M2+ (), &, 71, 81) be a Sasakian manifold, and M2%(J,, G,) a Kihlerian
manifold. Then M, X M, has a quasi-Sasakian structure (g, £,7,g) of rank
2p + 1 scuh that

3.1 ¢X = (6.X,,1.X5) ,
(3.2 §=1(,0,

(3.3) X)) = (XD,

3.4 8(X,Y) = g(X,,Y) + G(X,, Y)

for the canonical decompodition X = (X,, X,) of a vector field X on M, x M,
(ct. [1, Theorem 3.2]).
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Conversely, we have

Theorem 3.1’. Let M(g, &, 9, 8) be a quasi-Sasakian manifold (more gen-
erally, a normal almost contact Riemannian manifold) of rank 2p + 1. If g
defined by (2.3) is positive definite on &, and V8 = 0 with respect to the
Riemannian metric g defined by (2.4), then (¢, &, 1, g) is also a quasi-Sasakian
structure of rank 2p + 1, and M($, &, 7, 8) is locally the product of a Sasakian
manifold and a Kihlerian manifold.

Proof. Clearly, V6 = 0 implies 7y6* =0 and [4,¢] = 0. Then the
almost product Riemannian structure (defined by —¢* + ¢ ®@ 5 and —#°) is
integrable. Let x be an arbitrary point of M. Then we have some open set W
containing x such that W = U??*! x V%, which is a Riemannian product. From
(2.11) and 79 = 0, it follows that 2F = dy is closed, /& = 0 and, in particular,
d6 =0, so that @ = T + & is closed. Hence the structure (g, £,7, g) is quasi-
Sasakian, and L.g = 0 by (1.12). In order that U***! X V* be the product of
a Sasakian manifold U??*' and a Kihlerian manifold V%9, it must be shown that

3.5 Fx&=20 for X e £%7 ,
(3.6) Pyp=0 for X e &% .

(3.5) follows from Lemma 2.3 (cf. remark to Lemma 2.3), and (3.6) is equiv-
alent to Vx¥ =0 for Xe &, Since ® =T + 6 and FO = 0, we have
(Fx®@)(Y, Z) = 0. On the other hand, an application of Proposition 2.5 to the

quasi-Sasakian structure (g, &, %, g) yields
(3.7 T, Z) = W DT g)@Y) — 1N x1)($Z) .

Since Fz¢ = 0 implies 74y = O for X ¢ £, we have 7,0 = 0.

Now the Sasakian structure on U??+! and the Kdhlerian structure on V*2 de-
fined in Proposition 2.1 (cf. remark to Proposition 2.1) give the product quasi-
Sasakian structure on U??** x V?¢, which and the quasi-Sasakian structure on
W, restriction of (¢, &, 7, &) to W, are isomorphic by (3.5), (3.6) and 78 = 0.

Theorem 3.1. Let M(¢, &, 7) be a normal almost contact manifold such that

® p AP #0 and (dpP*' =0 on M,
(i) — (X, ¢X) >0  for any X e & .

Then we have a normal almost contact Riemannian structure (¢, &, 3, 8) which
admits the canonical almost product structure (—¢* + €@y, —6%). If V8 = 0,
then M(¢, &, 7, g) is locally the product of a Sasakian manifold of dimension
2p + 1 and a Kdihlerian manifold of dimension 2n — 2p.

In fact, let g’ be any Riemannian metric associated with (¢, &,7). Then
(¢, &, 3, &) is a normal almost contact Riemannian structure, and therefore we
obtain Theorem 3.1 by using Theorem 3.1’ for (¢, £, , g).
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4. A simple example

Let E? be a 3-dimensional Euclidean space with coordinates (x, y, z), and
define ¢, &, 75, g by

01 0
6=|—-1 0 0Of,
0O y O
§=1(0,0,2), 2p =(-»,0,1),
1+ 0 —y
4g = 0 1 0
—y 0 1

Then (¢, &, 7, g) is a Sasakian structure (cf. [3]). Let 8 be a non-constant posi-
tive function of x and y,i.e., f(x,y) > 0, and define

gr=pe+1—®y.
Then (g, &, 5, g%) is a normal almost contact Riemannian structure. In this case,

Logy— 1

O+ = pd = pdx A dy .

gdn =

Since § is a function of x and y, we have d®* = 0, and therefore EX¢, &,7,8%)
is a quasi-Sasakian manifold of rank 3, which is not Sasakian.
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