QUASI-SASAKIAN STRUCTURES OF RANK 2p+1

SHÛKICHI TANNO

Introduction

Quasi-Sasakian structures were defined and studied by D. E. Blair [1]. However, there are some gaps in arguments in § 3 — § 5 of [1]. The first is found in the middle of page 337, namely, for a quasi-Sasakian structure (ϕ, ξ, η, g') , the new (ϕ, ξ, η, g) is not quasi-Sasakian, in general. Moreover, $\mathscr{E}^{2q}, \phi, \theta$ are not uniquely determined.

In this note we give complete statements on quasi-Sasakian structures of rank 2p + 1.

1. Quasi-Sasakian structures

Let ϕ be a (1, 1)-tensor, ξ a vector field, and η a 1-form on a differentiable manifold M of dimension 2n + 1. Then (ϕ, ξ, η) is an almost contact structure if

(1.1)
$$\eta(\xi) = 1 , \quad \phi \xi = 0 , \quad \eta \phi = 0 ,$$

$$\phi^2 = -I + \xi \otimes \eta .$$

For a (positive definite) Riemannian metric g, (ϕ, ξ, η, g) is an almost contact metric structure if

$$\eta(X) = g(\xi, X) ,$$

$$(1.4) g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y)$$

for $X, Y \in \mathcal{E}^{2n+1}$, where \mathcal{E}^{2n+1} denotes the module of vector fields on M. An almost contact metric structure (ϕ, ξ, η, g) is a contact metric structure if

$$(d\eta)(X,Y) = 2g(X,\phi Y)$$
 for $X,Y \in \mathscr{E}^{2n+1}$.

 (ϕ, ξ, η) is said to be normal if

(1.5)
$$-N^{1}(X,Y) = [\phi,\phi](X,Y) + (d\eta)(X,Y)\xi = 0 .$$

$$([\phi,\phi](X,Y) = \phi^{2}[X,Y] + [\phi X,\phi Y] - \phi[X,\phi Y] - \phi[\phi X,Y] .)$$

 $N^1 = 0$ implies the followings (cf. [4]):

Received May 1, 1970, and, in revised form, November 12, 1970.

(1.6)
$$N^{2}(X, Y) = (L_{\phi X}\eta)(Y) - (L_{\phi Y}\eta)(X) = 0,$$

(1.7)
$$N^{3}(X) = (L_{\varepsilon}\phi)X = 0,$$

(1.8)
$$N^{4}(X) = -(L_{\varepsilon}\eta)X = 0,$$

where L_X denotes the Lie derivation with respect to X. Define a 2-form Φ by $\Phi(X, Y) = g(X, \phi Y)$. Then a normal almost contact Riemannian structure (ϕ, ξ, η, g) is said to be quasi-Sasakian, if Φ is closed.

Proposition 1.1. Let $M(\phi, \xi, \eta, g)$ be a quasi-Sasakian manifold. Then we have

$$(1.9) d\eta(\xi, X) = 0 , X \in \mathscr{E}^{2n+1} ,$$

(1.10)
$$d\eta(\phi X, \phi Y) = d\eta(X, Y) , \qquad X, Y \in \mathscr{E}^{2n+1} ,$$

$$(1.11) L_{\varepsilon}\phi = 0,$$

$$(1.12) L_{\varepsilon}g = 0.$$

Proof. (1.9) and (1.11) are the same as (1.8) and (1.7). Since $L_{\phi X} \eta = di(\phi X)\eta + i(\phi X)d\eta$, by (1.1) and (1.6) we obtain

$$(1.13) d\eta(\phi X, Y) - d\eta(\phi Y, X) = 0.$$

Then replacing Y by ϕY and using (1.9) we have (1.10). (1.12) can be proved by means of $d\Phi = 0$, (1.8) and (1.11) (cf. [1, Lemma 4.1]).

Remark. The condition $d\Phi = 0$ is used only for (1.12).

2. Quasi-Sasakian manifolds of rank 2p + 1

Let $M(\phi, \xi, \eta, g)$ be a quasi-Sasakian manifold. If $d\eta = 0$ on M, then M is called a cosymplectic manifold (cf. [2]). If $2\Phi = d\eta$, then M is called a Sasakian manifold or a manifold with normal contact metric structure (cf. [4]). In this case, $\eta \wedge (d\eta)^n \neq 0$ holds on M.

A quasi-Sasakian manifold M (or more generally, an almost contact manifold M) is said to be of rank 2p if $(d\eta)^p \neq 0$ and $\eta \wedge (d\eta)^p = 0$ on M, and to be of rank 2p + 1 if $\eta \wedge (d\eta)^p \neq 0$ and $(d\eta)^{p+1} = 0$ on M. It is known that there are no quasi-Sasakian structures of even rank (cf. [1]).

Let M be a quasi-Sasakian manifold of rank 2p + 1, and define a submodule \mathscr{E}^{2q} of \mathscr{E}^{2n+1} (2q = 2n - 2p) by

$$\mathscr{E}^{2q} = \{X \in \mathscr{E}^{2n+1}; i(X)d\eta = 0 \text{ and } \eta(X) = 0\}$$
.

 \mathscr{E}^{2q} is well defined and \mathscr{E}^{2q}_x is of dimension 2q at each point x of M. We denote by \mathscr{E}^1 a submodule of \mathscr{E}^{2n+1} composed of $\{f\xi\}$ for C^{∞} -functions f on M, and by \mathscr{E}^{2p} the orthogonal complement of $\mathscr{E}^1 \oplus \mathscr{E}^{2q}$ in \mathscr{E}^{2n+1} . Put $\mathscr{E}^{2p+1} = \mathscr{E}^{2p} \oplus \mathscr{E}^1$, and let $X \in \mathscr{E}^{2q}$. Then by $\eta(\phi X) = 0$ and (1.13) or (1.10) we have $\phi X \in \mathscr{E}^{2q}$. Since $X = \phi(-\phi X)$ for $X \in \mathscr{E}^{2q}$, we get

$$\phi\mathscr{E}^{2q} = \mathscr{E}^{2q} , \qquad \phi\mathscr{E}^{2p} = \mathscr{E}^{2p} .$$

Define (1,1)-tensors ϕ and θ by

$$\begin{split} \phi(X) &= \phi X & \text{if } X \in \mathscr{E}^{2p} \ , \\ &= 0 & \text{if } X \in \mathscr{E}^{2q} \oplus \mathscr{E}^1 \ , \\ \theta(X) &= \phi X & \text{if } X \in \mathscr{E}^{2q} \ , \\ &= 0 & \text{if } X \in \mathscr{E}^{2p+1} \ . \end{split}$$

Then $-\psi^2$, $-\psi^2 + \xi \otimes \eta$ and $-\theta^2$ are projection tensors to \mathscr{E}^{2p} , \mathscr{E}^{2p+1} and \mathscr{E}^{2q} respectively, and we have $\phi = \psi + \theta$ and

(2.2)
$$\phi \phi = \phi \phi = \phi^2, \quad \phi \theta = \theta \phi = \theta^2$$

by the definitions of ψ and θ and by (2.1) respectively. We define a (0,2)-tensor g^{\ddagger} by

(2.3)
$$2g^{\dagger}(X,Y) = -d\eta(X,\phi Y), \quad X,Y \in \mathscr{E}^{2n+1}.$$

By (1.13), g^{\dagger} is symmetric. Assume that g^{\dagger} is positive definite on \mathcal{E}^{2p} , and define a new metric \bar{g} by

$$\bar{g}(X,Y) = \eta(X)\eta(Y) + g^{\dagger}(\phi^2X,\phi^2Y) + g(\theta^2X,\theta^2Y).$$

Then we have

$$\bar{g}(\xi, X) = \eta(X)$$
, $\bar{g}(\phi X, \phi Y) = \bar{g}(X, Y) - \eta(X)\eta(Y)$

by (1.10) and (2.2), etc. $(\phi, \xi, \eta, \overline{g})$ is a normal almost contact metric structure. **Proposition 2.1.** Let $M(\phi, \xi, \eta, g)$ be a quasi-Sasakian manifold of rank 2p + 1, and assume that

- (i) $[\theta, \theta] = 0$,
- (ii) g^{\sharp} defined by (2.3) is positive definite on \mathscr{E}^{2p} . Then M has a normal almost contact metric structure $(\phi, \xi, \eta, \overline{g})$ such that for each point x of M we have two submanifolds U^{2p+1} and V^{2q} of M containing x, where U^{2p+1} is a Sasakian manifold and V^{2q} is a Kählerian manifold.

Proof. An almost product structure (defined by $-\theta^2$ and $-\psi^2 + \xi \otimes \eta$) is integrable (see [5, p. 240]), since $[\theta, \theta] = 0$ implies $[\theta^2, \theta^2] = 0$. For a point x of M, let V^{2q} and U^{2p+1} be integral submanifolds of $-\theta^2$ and $-\psi^2 + \xi \otimes \eta$ passing through x. Consider the imbeddings $r: V^{2q} \to M$ and $s: U^{2p+1} \to M$, and let u, v be vector fields on U^{2p+1} . Define $\phi_0, \xi_0, \eta_0, \overline{g}_0$ by

$$\begin{split} \phi_0 u &= s^{-1} \phi s u = s^{-1} \phi s u \;, & \xi_0 &= s^{-1} \xi \;, \\ \eta_0 (u) &= \eta (s u) \;, & \eta_0 &= s^* \eta \;, & \bar{g}_0 (u,v) &= \bar{g} (s u, s v) \;, \end{split}$$

where by s we also mean the differential of s; these are well defined. $(\phi_0, \xi_0, \xi_0, \xi_0)$ η_0, \bar{g}_0) is an almost contact metric structure, and is normal since

$$s\{[\phi_0,\phi_0](u,v)+(d\eta_0)(u,v)\xi_0\}=[\phi,\phi](su,sv)+(d\eta)(su,sv)\xi=0$$
.

Further, we have

$$2\bar{g}_0(u,\phi_0v) = 2\bar{g}(su,\phi sv) = 2g^*(su,\phi sv) = -(d\eta)(su,\phi\phi sv) = (d\eta)(su,sv) = (s^*d\eta)(u,v) = (d\eta_0)(u,v) .$$

Hence U^{2p+1} is a Sasakian manifold.

Let w, z be vector fields on V^{2p} , and define J_0 and G_0 by

$$J_0 w = r^{-1} \theta r w = r^{-1} \phi r w$$
, $G_0(w, z) = \bar{g}(r w, r z)$.

Then J_0 and G_0 are well defined and define an almost Hermitian structure. Moreover, J_0 is integrable since

$$r\{[J_0, J_0](w, z)\} = [\theta, \theta](rw, rz) = 0$$
.

Define $\Omega_0(w,z) = G_0(w,J_0z)$. Then

$$\Omega_0(w, z) = \overline{g}(rw, rJ_0z) = \overline{g}(rw, \phi rz)
= g(\theta^2 rw, \theta^2 \phi rz) \quad \text{by (2.4)}
= \Phi(rw, rz) = (r^*\Phi)(w, z) ,$$

and therefore $d\Omega_0 = dr^*\Omega = r^*d\Phi = 0$. Hence V^{2q} is Kählerian.

Remark. $d\Phi = 0$ is used only for $d\Omega_0 = 0$. Thus, if $d\overline{\Theta} = 0$, then $d\Phi = 0$ is unnecessary, where $\overline{\Theta}$ is defined below.

We define 2-forms $\Psi, \overline{\Psi}, \Theta, \overline{\Theta}$ by

$$\Psi(X,Y) = g(X,\phi Y), \qquad \overline{\Psi}(X,Y) = \overline{g}(X,\phi Y),
\Theta(X,Y) = g(X,\theta Y), \qquad \overline{\Theta}(X,Y) = \overline{g}(X,\theta Y).$$

Lemma 2.2. \mathcal{E}^{2p} and \mathcal{E}^{2q} are invariant under exp $t\xi$, and we have

(2.5)
$$L_{\xi}\psi = 0 , \qquad L_{\xi}\overline{\Psi} = L_{\xi}\overline{\Psi} = 0 ,$$
(2.6)
$$L_{\xi}\theta = 0 , \qquad L_{\xi}\overline{\Theta} = L_{\xi}\overline{\Theta} = 0 ,$$

$$(2.6) L_{\xi}\theta = 0 , L_{\xi}\overline{\Theta} = 0 ,$$

(2.7)
$$L_{\xi}g^{\sharp} = 0 , \qquad L_{\xi}\bar{g} = 0 .$$

Proof. Let $X \in \mathcal{E}^{2q}$ and put $\alpha = \exp t\xi$, t being a real number (sufficiently small, if necessary). If ξ is complete, α is a diffeomorphism of M. If ξ is not complete, we understand that α is a map: $W \to \alpha W$ for some open set W, and also that $X \in \mathscr{E}^{2q}$ implies $X \mid W \in \mathscr{E}^{2q} \mid W$. Since α leaves η invariant, we have $\eta(\alpha X) = 0$. For $Z \in \mathscr{E}^{2n+1}$,

$$(d\eta)(\alpha X, Z) = (d\eta)(\alpha X, \alpha(\alpha^{-1}Z)) = \alpha^*(d\eta)(X, \alpha^{-1}Z) = d\eta(X, \alpha^{-1}Z) = 0,$$

which implies $i(\alpha X)d\eta = 0$. Therefore \mathscr{E}^{2q} and also \mathscr{E}^{2p} are invariant under α . Next, we show (2.5). Let $X \in \mathscr{E}^{2p}$. Then we get

$$(2.8) (L_{\varepsilon}\phi)X = L_{\varepsilon}(\phi X) - \phi L_{\varepsilon}X.$$

By the definition of ϕ we have $\phi X = \phi X$. Since \mathscr{E}^{2p} is invariant under $\exp t\xi$, $L_{\varepsilon}X \in \mathscr{E}^{2p}$ and therefore $\phi L_{\varepsilon}X = \phi L_{\varepsilon}X$. Thus

$$(L_{\varepsilon}\phi)X = L_{\varepsilon}(\phi X) - \phi L_{\varepsilon}X = (L_{\varepsilon}\phi)X,$$

and $(L_{\xi}\phi)X=0$ by (1.11). If $X\in\mathscr{E}^{2q}\oplus\mathscr{E}^1$, then $(L_{\xi}\phi)X=0$ follows from (2.8). Hence we have $L_{\xi}\phi=0$. Further, $L_{\xi}\varPsi=0$ follows from $\varPsi(X,Y)=g(X,\phi Y)$ and (1.12), $L_{\xi}\theta=0$ from $L_{\xi}\phi=0$, $L_{\xi}\phi=0$ and $\phi=\phi+\theta$, and $L_{\xi}g^{\xi}=0$ from (2.3) and $L_{\xi}d\eta=dL_{\xi}\eta=0$. Finally, by (2.4) we have $L_{\xi}\bar{g}=0$.

Remark. $d\Phi = 0$ is used only for $L_{\xi}\bar{g} = 0$.

Lemma 2.3. For $X \in \mathcal{E}^{2n+1}$, we have

$$(2.9) \bar{\nabla}_X \xi = -\phi X .$$

Proof. Since $L_{\xi}\bar{g}=0$ by Lemma 2.2, we have $(\bar{V}_X\eta)Y+(\bar{V}_Y\eta)X=0$, which implies

$$(2.10) d\eta(X,Y) = (\bar{V}_{X}\eta)Y - (\bar{V}_{Y}\eta)X = -2(\bar{V}_{Y}\eta)X = -2\bar{g}(\bar{V}_{Y}\xi,X) .$$

Next, we show that

(2.11)
$$d\eta(X,Y) = 2\bar{g}(X,\phi Y)$$

for $X, Y \in \mathscr{E}^{2n+1}$. If $X, Y \in \mathscr{E}^{2p}$, then (2.11) is (2.3). If $X \in \mathscr{E}^{2q} \oplus \mathscr{E}^1$ or $Y \in \mathscr{E}^{2q} \oplus \mathscr{E}^1$, then both sides of (2.11) vanish. Thus we have (2.11), and finally (2.10) and (2.11) give (2.9).

Remark. $d\Phi = 0$ is used to apply $L_{\xi}\bar{g} = 0$. Thus, if $L_{\xi}\bar{g} = 0$, then Lemma 2.3 holds for a normal almost contact Riemannian manifold of rank 2p + 1.

By $K(X_x, Y_x)$ we denote the sectional curvature with respect to \bar{g} for a 2-plane determined by X_x and Y_x at x of M.

Theorem 2.4. Let $M(\phi, \xi, \eta, g)$ be a quasi-Sasakian manifold of rank 2p + 1, and assume that g^{ξ} defined by (2.3) is positive definite on \mathcal{E}^{2p} . Then, with respect to \bar{g} , we have

$$\begin{split} \overline{K}(\xi_x, X_x) &= 1 & \text{if } X_x \in \mathcal{E}_x^{2p} - 0 \\ &= 0 & \text{if } X_x \in \mathcal{E}_x^{2q} - 0 \end{split}.$$

Proof. Let $X \in \mathcal{E}^{2p} \oplus \mathcal{E}^{2q}$ and assume that X is a unit vector field (locally). Then, by (2.5) and (2.9),

$$\bar{g}(\bar{R}(\xi,X)\xi,X) = \bar{g}((\bar{V}_{[\xi,X]} + \bar{V}_X\bar{V}_\xi - \bar{V}_\xi\bar{V}_X)\xi,X) = -\bar{g}(\psi^2 X,X) \ .$$

Thus, if $X_x \in \mathscr{E}_x^{2p}$, then $K(\xi_x, X_x) = 1$; if $X_x \in \mathscr{E}_x^{2q}$, then $K(\xi_x, X_x) = 0$. **Proposition 2.5.** In a quasi-Sasakian manifold, we have

(2.12)
$$(\overline{V}_X \Phi)(Y, Z) = \eta(Z)(\overline{V}_X \eta)(\phi Y) - \eta(Y)(\overline{V}_X \eta)(\phi Z)$$

$$(= \eta(Z)g(\overline{V}_X \xi, \phi Y) - \eta(Y)g(\overline{V}_X \xi, \phi Z)) .$$

If M is of rank 2p + 1 and $\nabla_X \xi = -\phi X$, then

(2.13)
$$(\nabla_{X} \Phi)(Y, Z) = \eta(Y)g(X, Z) - \eta(Z)g(X, Y) + \eta(Y)g(\theta^{2}X, Z) - \eta(Z)g(\theta^{2}X, Y) .$$

If M is of rank 2p + 1 and $\overline{\Phi}$ is also closed for the metric \overline{g} defined by (2.4), then (2.13) holds for $\overline{V}, \overline{\Phi}, \overline{g}$.

Proof. In [4] under the assumptions $N^1=0, d\Phi=0$ and $L_\xi g=0$, it was proved that

$$abla_i \Phi_{ik} = -\eta_i \nabla_i \eta_h \phi_k^h - \eta_k \nabla_j \eta_i \phi_i^j$$
,

which is nothing but (2.12) since $\nabla_j \eta_i = -\nabla_i \eta_j$. If M is of rank 2p+1 and $\nabla_X \xi = -\psi X$, then we obtain (2.13) from (2.12) on account of (1.4), $\phi \psi = \psi^2$, and $\psi^2 = -I + \xi \otimes \eta - \theta^2$. If $\overline{\Phi}$ is closed, we have (2.12) for $\overline{V}, \overline{\Phi}, \overline{g}$, and hence the last statement of Proposition 2.5 follows from (2.9).

Next we have (cf. [1, Theorem 5.2])

Corollary 2.6. A quasi-Sasakian manifold is cosymplectic if and only if $\nabla \Phi = 0$ (or equivalently $\nabla \phi = 0$).

In fact, if a quasi-Sasakian manifold is cosymplectic, then $d\eta = 0$ and $L_{\xi}g = 0$, which imply $V\eta = 0$. Thus by (2.12) we have $V\Phi = 0$. The converse follows from $[\phi, \phi] = 0$ and (1.5).

3. Locally product quasi-Sasakian manifolds

Let $M_1^{2p+1}(\phi_1, \xi_1, \eta_1, g_1)$ be a Sasakian manifold, and $M_2^{2q}(J_2, G_2)$ a Kählerian manifold. Then $M_1 \times M_2$ has a quasi-Sasakian structure (ϕ, ξ, η, g) of rank 2p+1 scuh that

$$\phi X = (\phi_1 X_1, J_2 X_2) ,$$

$$\xi = (\xi_1, 0) ,$$

$$\eta(X) = \eta_1(X_1) ,$$

$$(3.4) g(X,Y) = g_1(X_1,Y_1) + G_2(X_2,Y_2)$$

for the canonical decompodition $X = (X_1, X_2)$ of a vector field X on $M_1 \times M_2$ (cf. [1, Theorem 3.2]).

Conversely, we have

Theorem 3.1'. Let $M(\phi, \xi, \eta, g)$ be a quasi-Sasakian manifold (more generally, a normal almost contact Riemannian manifold) of rank 2p + 1. If g^* defined by (2.3) is positive definite on \mathscr{E}^{2p} , and $\overline{V}\theta = 0$ with respect to the Riemannian metric \overline{g} defined by (2.4), then $(\phi, \xi, \eta, \overline{g})$ is also a quasi-Sasakian structure of rank 2p + 1, and $M(\phi, \xi, \eta, \overline{g})$ is locally the product of a Sasakian manifold and a Kählerian manifold.

Proof. Clearly, $\bar{V}_X\theta=0$ implies $\bar{V}_X\theta^2=0$ and $[\phi,\phi]=0$. Then the almost product Riemannian structure (defined by $-\psi^2+\xi\otimes\eta$ and $-\theta^2$) is integrable. Let x be an arbitrary point of M. Then we have some open set W containing x such that $W=U^{2p+1}\times V^{2q}$, which is a Riemannian product. From (2.11) and $\bar{V}\theta=0$, it follows that $2\bar{W}=d\eta$ is closed, $\bar{V}\bar{\Theta}=0$ and, in particular, $d\bar{\Theta}=0$, so that $\bar{\Phi}=\bar{W}+\bar{\Theta}$ is closed. Hence the structure (ϕ,ξ,η,\bar{g}) is quasi-Sasakian, and $L_\xi\bar{g}=0$ by (1.12). In order that $U^{2p+1}\times V^{2q}$ be the product of a Sasakian manifold U^{2p+1} and a Kählerian manifold V^{2q} , it must be shown that

$$(3.5) \bar{V}_X \xi = 0 \text{for } X \in \mathscr{E}^{2q} ,$$

$$(3.6) \bar{V}_X \phi = 0 \text{for } X \in \mathscr{E}^{2q} .$$

(3.5) follows from Lemma 2.3 (cf. remark to Lemma 2.3), and (3.6) is equivalent to $\overline{V}_X\overline{\Psi}=0$ for $X\in\mathscr{E}^{2q}$. Since $\overline{\Phi}=\overline{\Psi}+\overline{\Theta}$ and $\overline{V}\overline{\Theta}=0$, we have $(\overline{V}_X\overline{\Phi})(Y,Z)=0$. On the other hand, an application of Proposition 2.5 to the quasi-Sasakian structure $(\phi,\xi,\eta,\overline{g})$ yields

$$(3.7) (\bar{V}_X \overline{\phi})(Y, Z) = \eta(Z)(\bar{V}_X \eta)(\phi Y) - \eta(Y)(\bar{V}_X \eta)(\phi Z) .$$

Since $\bar{\nabla}_X \xi = 0$ implies $\bar{\nabla}_X \eta = 0$ for $X \in \mathscr{E}^{2q}$, we have $\bar{\nabla}_X \bar{\Phi} = 0$.

Now the Sasakian structure on U^{2p+1} and the Kählerian structure on V^{2q} defined in Proposition 2.1 (cf. remark to Proposition 2.1) give the product quasi-Sasakian structure on $U^{2p+1} \times V^{2q}$, which and the quasi-Sasakian structure on W, restriction of $(\phi, \xi, \eta, \bar{g})$ to W, are isomorphic by (3.5), (3.6) and $\bar{\rho}\theta = 0$.

Theorem 3.1. Let $M(\phi, \xi, \eta)$ be a normal almost contact manifold such that

(i)
$$\eta \wedge (d\eta)^p \neq 0$$
 and $(d\eta)^{p+1} = 0$ on M ,

(ii)
$$-(d\eta)(X,\phi X) \geq 0 \quad \text{for any } X \in \mathscr{E}^{2n+1}.$$

Then we have a normal almost contact Riemannian structure (ϕ, ξ, η, g) which admits the canonical almost product structure $(-\phi^2 + \xi \otimes \eta, -\theta^2)$. If $\nabla \theta = 0$, then $M(\phi, \xi, \eta, g)$ is locally the product of a Sasakian manifold of dimension 2p + 1 and a Kählerian manifold of dimension 2n - 2p.

In fact, let g' be any Riemannian metric associated with (ϕ, ξ, η) . Then (ϕ, ξ, η, g') is a normal almost contact Riemannian structure, and therefore we obtain Theorem 3.1 by using Theorem 3.1' for (ϕ, ξ, η, g') .

4. A simple example

Let E^3 be a 3-dimensional Euclidean space with coordinates (x, y, z), and define ϕ, ξ, η, g by

$$\phi = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & y & 0 \end{pmatrix},$$

$$\xi = (0, 0, 2), \qquad 2\eta = (-y, 0, 1),$$

$$4g = \begin{pmatrix} 1 + y^2 & 0 & -y \\ 0 & 1 & 0 \\ -y & 0 & 1 \end{pmatrix}.$$

Then (ϕ, ξ, η, g) is a Sasakian structure (cf. [3]). Let β be a non-constant positive function of x and y, i.e., $\beta(x, y) > 0$, and define

$$g^* = \beta g + (1 - \beta)\eta \otimes \eta$$
.

Then (ϕ, ξ, η, g^*) is a normal almost contact Riemannian structure. In this case,

$$\Phi^* = \beta \Phi = \frac{1}{2} \beta d\eta = \frac{1}{4} \beta dx \wedge dy$$
.

Since β is a function of x and y, we have $d\Phi^* = 0$, and therefore $E^3(\phi, \xi, \eta, g^*)$ is a quasi-Sasakian manifold of rank 3, which is not Sasakian.

References

- [1] D. E. Blair, The theory of quasi-Sasakian structures, J. Differential Geometry 1 (1967) 331-345.
- [2] P. Libermann, Sur les automorphismes infinitésimaux des structures symplectiques et des structures de contact, Colloq. Géométrie Différentielle Globale, Centre Belge Rech. Math., Louvain, Belgique, 1959, 37-59.
- [3] M. Okumura, On infinitesimal conformal and projective transformations of normal contact spaces, Tôhoku Math. J. 14 (1962) 398-412.
- [4] S. Sasaki & Y. Hatakeyama, On differentiable manifolds with contact metric structures, J. Math. Soc. Japan 14 (1962) 249-271.
- [5] K. Yano, Differential geometry on complex and almost complex spaces, Pergamon, New York, 1965.

Tôhoku University